Site-specific growth and density control of carbon nanotubes by direct deposition of catalytic nanoparticles generated by spark discharge

نویسندگان

  • Hyungjoo Na
  • Jae Hong Park
  • Jungho Hwang
  • Jongbaeg Kim
چکیده

Catalytic iron nanoparticles generated by spark discharge were used to site-selectively grow carbon nanotubes (CNTs) and control their density. The generated aerosol nanoparticles were deposited on a cooled substrate by thermophoresis. The shadow mask on top of the cooled substrate enabled patterning of the catalytic nanoparticles and, thereby, patterning of CNTs synthesized by chemical vapor deposition. The density of CNTs could be controlled by varying the catalytic nanoparticle deposition time. It was also demonstrated that the density could be adjusted by changing the gap between the shadow mask and the substrate, taking advantage of the blurring effect of the deposited nanoparticles, for an identical deposition time. As all the processing steps for the patterned growth and density control of CNTs can be performed under dry conditions, we also demonstrated the integration of CNTs on fully processed, movable silicon microelectromechanical system (MEMS) structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

Effects of Confinement in Carbon Nanotubes on the Performance and Lifetime of Fischer-Tropsch Iron Nano Catalysts

The effects of confinement in carbon nanotubes on Fischer-Tropsch (FT) activity, selectivity and lifetime of Carbon NanoTubes (CNTs) supported iron catalysts are reported. A method was developed to control the position of the catalytic sites on either inner or outer surface of carbon nanotubes. TEM analyses revealed that more than 80% of iron oxide particles can be controlled to be position...

متن کامل

Growth of CNTs over Fe–Co/Nanometric TiO2 Catalyst by CVD: The Effects of Catalyst Composition and Growth Temperature

   In this research carbon nanotubes were produced by chemical vapor deposition of acetylene over a mixture of iron and cobalt catalysts supported on nanometric TiO2 and the influences of two synthesis parameters: growth temperature and catalyst composition ratio on properties of end-product carbon nanotubes were investigated. The catalytic basis was prepared by wet impregnation ...

متن کامل

Synthesis and Characterization of Carbon Nanotubes Catalyzed by TiO2 Supported Ni, Co and Ni-Co Nanoparticles via CCVD

Monometallic and bimetallic Ni and Co catalytic nanoparticles supported on Titanium dioxide (rutile phase) substrate were prepared by wet impregnation method. These nanoparicles were used as catalysts for synthesis of multiwalled carbon nanotubes (MWCNTs) from acetylene decomposition at 700°C by the catalytic chemical vapor deposition (CCVD) technique. The nanomaterials (catalyst and CNTs) were...

متن کامل

Evaluation of the Effect of Ni-Co NPs for the Effective Growth of Carbon Nanotubes by TCVD System

A systematic study was conducted to understand the influences of catalyst combination as Ni-Co NPs on carbon nanotubes (CNTs) grown by Chemical Vapor Deposition (TCVD). The DC-sputtering system was used to prepare Co and Ni-Co thin films on silicon substrate. Ni- Co nanoparticles were used as metal catalyst for growing carbon nanotubes from acetylene (C2H2) gas in 850 ̊ C during 15 min. Carb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013